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1. Introduction

Spectral methods have been used to great advantage in hydrodynamic stability calculations;

the concepts are described in Orszag’s seminal application of the Chebyshev tau method to

the Orr-Sommerfeld equation for plane Poiseuille flow in 1971 [1 ]. Orszag discusses both

the Chebyshev Galerkin and the Chebyshev tau methods, but presents results for the tau

method, which is easier to implement than the Galerkin method. The tau method has the

disadvantage that two unstable eigenvalues are produced that are artifacts of the discretiza-

tion. The occurrence of spurious eigenvalues has been discussed by several authors, c.f.

[
2

,
3

,
4 ,5 ,

6
,
7 ],

In this note we present an extremely simple modification to the Chebyshev tau method

which eliminates the spurious eigenvalues. We first study a simplified model of the Orr-

Sommerfeld equation discussed by Gottlieb and Orszag [2]. We consider the Chebyshev tau

method, which has two spurious eigenvalues, and then describe a modification which elim-

inates them. Our modification is motivated by considering two other discretizations of the

model problem which also have no spurious modes: a vorticity-streamfunction reformulation

of the Chebyshev tau method, and the Chebyshev Galerkin method. For the model problem

we show that the latter approaches are equivalent, and that both reduce to our modification

of the tau method. We also remark on the modified Galerkin method formulated by Zebib

[4,6]. Finally, we consider results for the Orr-Sommerfeld equation, where our modified tau

method also eliminates the spurious eigenvalues. The simplicity of the modification makes
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it a convenient alternative to other approaches to the problem.

2. The Model Problem

In their 1977 monograph on spectral methods, Gottlieb and Orszag [2, p. 143] consider the

problem

^zzt = ^ (-1 < * < 1, t > 0), (1)

with the boundary conditions $(±1, t
)
= $,(±1, t) — 0, as a simple model of incompressible

fluid dynamics. A normal mode of the form T( 2
,
t
)
= ip{z) exp at gives rise to the eigenvalue

problem

*l>zzzz
= (-1<2<1), (2a)

with the boundary conditions

V>(±1) = tG(±l) = 0 (2b)

The latter problem models some features of the Orr-Sommerfeld equation [1], and can be

solved exactly. The eigenvalues of (2) are given by the values a — — /r
2

,
where either f.i

= nir

for n = 1,2, . . ., corresponding to the even eigenfunctions with x^>zz = cos fiz, or ^ is a positive

root of the transcendental equation tan p = corresponding to the odd eigenfunctions with

xjjzz — sin [iz.

2.1. The Tau Method

Gottlieb and Orszag [2] show that a straightforward application of the Chebyshev tau method

to Eq. (2) gives rise to positive eigenvalues whose magnitudes increase rapidly as more terms

are included in the expansion. Such spurious modes may be discarded by inspection for

the system given by (2), but they cause severe numerical instability in the time-dependent

system (1). The equations for the Chebyshev tau method are obtained by writing

N
</> = £ a„T„(z) (3)

n—0
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where Tn (z) is the n-th degree Chebyshev polynomial, which satisfies Tn (cos9) = cos nO. We

then have [l]

N N

^zz = a {

n
]Tn {z ), (4a)

71=0 77=0

where
N

Cna (

n
] = E p(p

2 - n2
)a pl (4b)

p=7i+2
P+tz even

cna^
4

' = —
24 E pIp

2
(p

2 _ 4)2_ 3n 2
p
4 + 3n 4

p
2 — n 2

(n
2 — 4)

2
]a

p ,
(4c)

p=n+4
p+n even

and Cq = 2 and cn = 1
(2)

for n > 0. Note that these expressions give 0 = aN_ l
- a

(2) -— aN —

a
[

N_ 3 — a;v_ 2 = aW-\ — aN > since V’z* and V’zzzz are polynomials of degree N — 2 and N — 4,

respectively. Equations for the coefficients a n are defined by the relations

frr _ /rr

dz 4 }
“ <7(r?

’ ’ i — 0, . .
. ,
A — 4,

where in the Chebyshev inner product we have (Tj,T^) = (tt!2)cj6jk . The resulting tau

equations are then

<7a (
2

) n = 0, . .
.

,

N —
4, (5a)

with the four boundary conditions that follow from (2b),

N N
'£(±l) nan = £(±l)”n2a„ =0. (5b)

n— 0 n=0

The equations can be written as a generalized eigenvalue problem Ax — aBx
,
where ,4 and

B are (N + 1) x (N + 1) matrices whose first N — 3 rows are defined by Eq. (5a). The last

four rows of A are given by Eq. (5b), and the last four rows of B vanish.
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We illustrate the matrix equations schematically for the case N = 8 :

X X

X X

X

X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X
/

a 0 . . X . X . X . X a0

a 1 . . . X . X . X ai

a 2 . . . . X . X . X a 2

X . X a 3

a a
— (7 X . X a a

as a 5

a 6 a6

a 7 a 7

a 8 ) V ......... ) \ a 8 )

(
6

)

here the non-zero entries are denoted by the symbol V.

This system may be solved numerically using software such as the routine RGG from the

EISPACK library
[
8 ]. In Table I we give numerical results for the system (5) obtained with

RGG. The table shows the values of the first and fifth negative eigenvalues <7i and and

the larger of two positive spurious eigenvalues <rmax . These results reproduce those given in

Table 13.1 of
[
2 ]. (Note that there is a typographical error in

[
2

]
in the results for <75 for

.large N.) The numbers were computed in double precision on the CDC Cyber 205 at the

National Institute of Standards and Technology to reduce the round-off error. For single

precision calculations on the Cyber 205 the effect of round-off becomes noticeable in the last

two digits of <7 i for N > 25; the given values for cr5 and crmax remain the same.

Subroutine RGG provides solutions to the problem written in the form (3Ax = aBx [9], so

that for (3j ^ 0 the j-th eigenvalue is given by crj — ctj/ flj. Solutions with f3
= 0 correspond to

the null space for the related problem Bx = fiAx, where n — 1/cr, and may be associated with

infinite values for <7. Eigenvalues with /3 = 0 occur for the above system due to the boundary

conditions (5b). For a given value of N > 6
,
four eigenvectors with (3 = 0 are obtained, and

the other N — 3 eigenvectors have (3^0. Eigenvalues with (3 — 0 may be avoided by using

the four equations (5b) representing the boundary conditions to eliminate the variables ayv- 3 ,

ayv— 2, ayv- 1 ,
and ayv from the system as described in [7]. This eliminates the eigenvalues with

(3 = 0; the values with (3^0 are unchanged. The numbers aq and (3j can also be used
[
10

]

to give an estimate of the sensitivity of the computed eigenvalue to perturbations in A and
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B: <Tj is ill-conditioned if the condition number C(aj) = 1/ \J\aj\
1 + \(3j\

2
is large, in which

case crj will be difficult to determine using low precision arithmetic.

2.2. A Modified Tau Method

A useful modification of the tau method (5) is obtained by considering instead the equations

a (4) = aa (2)u n u

u

n i
n = 0, . .

. ,
N — 4, i a

with the four boundary conditions

N N
^(±1 )

n
a n — ]P(±l) nn 2

an = 0, 7b)

n— 0 n= 0

where we have defined

Cnfli
2

’ = p(p
2 - n 2

)ci
v

. (8)

p=n+ 2

p+Ti even

Note that a

^

is obtained from a^ by simply dropping the last two terms. Thus, the

modified matrix eigenvalue problem is obtained from the tau eigenvalue problem Ax — aBx

by setting the last two columns of B to zero.

Numerical results for the system (7) are also presented in Table I. The two spurious eigen-

values that are obtained using the standard tau method are eliminated, and the remaining

eigenvalues are computed with essentially no loss in accuracy. The numbers were computed

in double precision on the CDC Cyber 205 at NIST.

The motivation for our modification of the usual tau method is given in the following

two sections.

2.3. Vorticity-Streamfunction Formulation

Gottlieb and Orszag [2] show that the spurious roots in the Chebyshev tau method are

eliminated if the function ( = tpzz is introduced; £ plays the role of vorticity in this simple

model. In this case the model equations take the form

(9a)

tyzz = C, (9b)
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with

VK±i) = V>*(±i) = o. (9c)

We now have two coupled second order equations for ( and ip; note, however, that there are

four boundary conditions on ip and none on (.

If, in addition to Eq. (3), we write

N

c =
77=0

(10)

then the tau equations for (9) become

e = &bn ,
n = 0,

.

1 to (lla)

a<
2) =' bm n = 0, .

.

N - 2..,1V w, (lib)

together with the four boundary conditions

N N
Y2(±l)

n
a n = £(±1 )"n2

a„ == 0. (11c)

71=0 71=0

These equations also take the form of a generalized eigenvalue problem, and may be

solved using subroutine RGG. In this case it is found that the discretized Poisson equation

(lib) contributes N + 1 eigenvectors with (3 = 0. There are an additional four eigenvectors

with (3 = 0 arising from the terms representing the boundary conditions, leaving N — 3

eigenvectors with (3^0. For this system all eigenvalues with (3^0 are negative; the

spurious eigenvalues have been eliminated.

As pointed out by Gardner et al. [7], the size of the system may be reduced by using the

last two equations in (11a) to eliminate the unknowns i and 6jv, and then using (lib)

to eliminate bj for j = 0,...,iV — 2. The first N — 3 equations in (11a), together with the

boundary conditions (11c), then constitute a generalized eigenvalue problem analogous to

the system (5), but without spurious eigenvalues that have Re((j) > 0. The eigenvalues with

(3 0 are unchanged by the elimination. We next show explicitly the difference between

formulations (5) and (11). If we introduce the general notation

N
= j = 0,...,N,

k=

0
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where the elements Y jk follow from the explicit form of Eq. (4b), then the last two equations

in (11a) give

vbN_ 2 = b$ = rtv— 2,7V^7V} crbw-z — bj^_
x
= T/v-s.tv-i&tv-i

•

Putting these expressions for 6yv and 6
yy-

1

into the first N — 3 equations in (11a), and then

using (lib) to eliminate the remaining 6
; ,
we obtain

'V'*' r (
2

) ( (
2

)
^jV-l

(
2

)
Y

j N (2 )

2_, I
flj - p %-3 - p aN-2

k= 0 V 1 W-aTV-l iTV— 3,7V— 1 i 7V-2.7V

Since u'v-i — aN = 0, the left hand side may be written

TV— 2 TV

j = 0,...,lV — 4.

.( 2 )

£ ?A2) = £ i>

<

2
> = i = o jv.

0 fc=0

Finally, since a|v-3 — ryv- 3,TV-i<2 TV-i and a^_
2 = Yjv_ 2 ,Na Ni we conclude that the tau

equations (11a) and (lib) are equivalent to

<44) = cra^ ] - crYri'N-iaN-i - a

Y

n,N^N n = 0, . .
. ,

iV — 4.
' 12

'

Since

ai,
2

> =
TV

^ (
r nfc a*

yfc=0

the resulting system is precisely equivalent to our modified equations (7).

2.4. Chebyshev Galerkin Method

The Chebyshev Galerkin discretization of the model problem (2) is also free from spurious

eigenvalues [2]. In this representation, we write

TV

a n<i>n{z), (13)

n= 4

where the functions
<f>n are chosen to satisfy the boundary conditions <j>n = d4>n/dz = 0 at

2 = ±1, i.e.

,

4>n{ z )
— Tn (z) + ')noTo(z) + ')n\Tx (z) + 7n2^2( 2 ) + ln?,T2 {z) Tl — 4, . . . ,

N]
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here

7n0 —

7n2

\{n 2 —
4), 72 even 0, 72 even

0, odd
7nl —

|( n
2 — 9), 72 odd

— i-72 2
,

72 even
7n3 —

0, n even

— Un 2 —
1), n odd.0, 72 odd

The Galerkin equations for the coefficients are defined by the relations

d4
ip

N / (

d2
ip

dT2( ’

~dz*
)
= j = 4,...,Ah (14)

If we introduce four additional coefficients a 0 ,
a*, a 2 ,

and a 3 ,
we may write as before

N

V>( 2 ) = n anTn (z), (15)

n=0

where

It follows that

N
— 'y

^ 0‘n'lnj i J — 0, . . . ,
3.

71= 4

d4 lp _d2
Xp

rj-1
/ ^\

.4
G

J 2
~

/ ;
e n-^ n(^ b (16)

n= 0
d .?

4

where e n = a^4 * — aa Gfi The Galerkin equations (14) are therefore equivalent to the iV — 3

equations,

0 — G' + 27joCo + 7ji e i + lj2^2 + 7j363 j = 4, . .
. ,
N, (17a)

plus the boundary conditions

N N
^(±l) n

an = ^(±l) n
72

2
a n = 0 (17b)

n= 0 n=

0

which hold by the construction of a0 ,
a1? a 2 ,

and a 3 .

We next show that equations (17a) are equivalent to (12). Since tp(z) is a polynomial

of degree N, it follows from (16) that e^r — e^-i — 0, e^_ 2 = —ctT/v^a^/v and e;v_ 3 =

— crr/v- 3,iv-iaA7-i- The last four equations in (17a) may then be used to obtain e 0 ,
e 1? e2

and e3 in terms of and cln-\\ a calculation gives

tk — — crT k,N-iaN-i — vFk'Na-N, k = 0, ... ,3.

A further calculation then shows that

27j0e 0 + 7jl e l + 1]2&2 + 7j363 — ^j,N-l aN-l + CTTj'NaN j = 4, . .
. ,

TV - 4.



Combining these last two expressions with (17a) we obtain

e n = —oT nijv-i a iV-i — cT n,NaN n — 0, . .
.

,

N — 4,

which reduce to (12).

We conclude that each of the discrete eigenvalue problems (7), (11), and (17) are equiv-

alent in the sense that eigenvalues a with f3 / 0 that are produced by each formulation are

identical.

2.5. Other Galerkin Procedures

Other variants of the Galerkin formulation are possible. For example, Zebib [4,6] introduces

a different basis by writing
N-A

(18)

N-A

hnUn{z),
n— 0

where the u n (z) are linearly independent polynomials of degree at most iV, uniquely char-

acterized by

dS
,
=Tn (z),

Qj4,

with the boundary conditions u n = du n /dz = 0 at z = ±1. Zebib’s original approach [4]

produced results that included spurious eigenvalues, which he was later able to eliminate [6].

The functions un (z) for n — 0, .

.

.

,

N — 4, and the functions (j>k for k = 4, . .
. ,
N used

in the previous section span the same space, i.e. the set of N- th degree polynomials which,

together with their derivatives, vanish at z = ±1. It follows that the function ip(z) Eq- (18)

can be re-expressed as a linear combination of Tn (z), n = 0 ,... ,iV, as in Eq. (15), where

the coefficients a
3
are linearly related to the constants h n above and satisfy (17b). Eq. (16)

holds as well.

Using Zebib’s original approach [4] on the model problem, we take the inner product

of the equations (16) with Tn for n = 0,...,jV — 4 and obtain equations which, in terms

of the variables are precisely equivalent to the Chebyshev tau equations en = 0 for

n = 0, . .
.

,

N — 4.

Using Zebib’s later approach [6] we take the inner product of the equations (16) with un

for n = 0, . .
.

,

N — 4. Since each basis function u n can be expressed as a linear combination

-9-



of the functions 0^, we obtain a linear combination of the equations (17). The corresponding

matrix equations are now related by pre- and post-multiplication by invertible matrices, and

the spectrums are identical. Thus Zebib's second approach produces eigenvalues which are

in principle identical to those obtained using the regular Galerkin formulation outlined in

the previous section. In practice, the condition numbers for the eigenvalues obtained using

Zebib’s later approach are large compared to those obtained using the standard Galerkin

method. Roughly speaking, this may be attributed to the fact that the basis un is not as

well-conditioned as the basis 0^; the 0*. are more nearly orthogonal (cf. [11]).

These results generalize, in the sense that expanding in any basis for polynomials of

degree N satisfying the boundary conditions still produces a function which satisfies Eqs.

(15)— ( 16). Taking the inner product of the equations with Tn will produce the spectrum

from the Chebyshev tau method, with spurious eigenvalues. Taking the inner product of the

equations with the basis functions will produce the spectrum from the standard Galerkin

method, with no spurious eigenvalues.

3. Other Model Problems

In Table II we list eight model problems of second through sixth order which were discretized

and solved using the Chebyshev tau method with N — 20. Spurious eigenvalues were

observed in three of these cases. The first was considered in Section 2. The spurious modes

in the remaining two problems, both sixth order, were eliminated using a modified tau

method similar to that proposed in Section 2.2.

In problem 7 we use the modified discretization

a If*
= era^ n = 0, . .

. ,
N — 6,

where

cna
(

n
'1 = X] p{p

2 -n 2
)a

p
-

p=n+

2

p+n even

that is, the last four columns of the matrix representing are set to zero. In problem 8

we use the discretization

a (
6

)

n a aL
4 ' n = 0, . .

. ,
N — 6

-10-



where

cn a'n
‘> = 77 S P[P

2
(P

2 ~ 4)
2 - 3n 2

p
4 + 3

n

4
p

2 - n2
(n

2 - 4)
2
]a

p ;

24
d 4

) = _
p=n+4
p+n even

that is, the last two columns in the matrix representing a [T have been set to zero. In each of

these cases no significant change in the accuracy of the computed eigenvalues was observed.

4. Orr-Sommerfeld Equation

The Orr-Sommerfeld equation for plane Poiseuille flow may be written in the form [1]

[^zzzz
- 2a 2

^zz + a 4
^]/(iaR) - (

U(z
)
- s)(ipzz - a 2

ip) + Uzz ip = 0

for — 1 < z < 1, where U(z) — 1 — z
2

is the base velocity, a is the wavenumber of the

disturbance, R is the Reynolds number of the flow, and s is the temporal eigenvalue. The

boundary conditions at 2 = ±1 are ifj = tpz = 0. For a given Reynolds number, the flow

is stable if Im(s) < 0 for all wavenumbers a. The critical Reynolds number Rc is that for

which the imaginary part of 5 first vanishes at a critical wavenumber ac as R is increased.

The use of the Chebyshev tau method to discretize the equations produces two spurious

eigenvalues with Im(s) > 0; results for the standard test case a = 1 and R = 10,000 [1] are

given in Table II. The results were obtained using single precision on the CDC Cyber 205 at

NIST with the IMSL routine EIGZC [12].

The spurious eigenvalues may be removed by employing the vorticity-streamfunction

formulation [2,7] or by employing a Galerkin [2] or modified Galerkin approach [6]. As in

the model problem, Zebib’s approaches are expected to lead to the same eigenvalues as the

Chebyshev tau [4] or Chebyshev Galerkin [6] methods (in the absence of rounding errors).

As another alternative, a direct modification of the usual Chebyshev tau formulation is

suggested by the results of section 2.2. If the equations are written in the form

[ipzzzz
- 2

a

2

V>*2 + a 4xp]/(—iaR) + U(z)(^zz - a 2
?/') - Uzz ip = s(^zz - a 2

il>),

then the Chebyshev tau formulation produces N — 3 linear equations

[of -2a2
a (V + a\ n\l(-iaR) + ... = s(a[2) - a 2

a n )
n = 0 , . .

.

,

N -
4, (19)
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together with the four boundary conditions (17b), where for simplicity we have omitted in

(19) the convolution sums involving U(z) whose form is unimportant for this discussion. To

obtain the suggested modification, this expression is approximated instead by the formula

[a
{4) - 2a 2a^ ] + a 4

a n]/{-iaR ) + . . . = s{a (2) - a 2
a n )

n = 0 , . .
.

,

N

- 4,,

where the left hand side is unchanged and a

^

is given by (8); that is, the last two columns

in the matrix that represents the second derivative are set to zero. As shown in Table III,

this modification also serves to eliminate the two spurious eigenvalues in this case as well,

with essentially no loss of accuracy in the other eigenvalues. It is not surprising that the

modification successfully eliminates the spurious modes, since the Orr-Sommerfeld equation

differs from the model problem only in the lower-order derivative terms on either side of the

equation.

Due to differing treatment of these lower-order terms, this modification of the usual

tau formulation of the Orr-Sommerfeld equation is not equivalent to either the vorticity-

streamfunction formulation or the Galerkin formulation; the corresponding eigenvalues that

are computed for a given N are similar but not identical. Our modified tau method is more

efficient than the vorticity-streamfunction formulation [2], which doubles the size of the sys-

tem, or a Galerkin formulation [1,6], which is more awkward to implement. Eliminating half

of the unknowns to reduce the size of the system in the vorticity-streamfunction formulation

[7] also produces a more complicated system of equations.

5. Acknowledgements

The authors are grateful for helpful discussions with S. Coriell, J. Gary, A. Pearlstein, and A.

Zebib. The first author (GBM) acknowledges partial support by the Microgravity Sciences

and Applications Program, NASA. The second author (BTM) was supported by an National

Research Council Postdoctoral Research Fellowship.

-12-



References

[1] S. A. Orszag, J. Fluid Mech. 50, 689 (1971).

[2] D. Gottlieb and S. A. Orszag, Numerical A nalysis of Spectral Methods: Theory and Ap-

plications (CBMS-NSF Regional Conference Series in Applied Mathematics 26, SIAM,

Philadelphia, 1977).

[3] J. Gary and R. Helgason, J. Comput. Phys. 5, 169 (1970).

[4] A. Zebib, J. Comput. Phys. 53
, 443 (1984).

[5] B. Brenier, B. Roux, and P. Bontoux, J. Theor. Appl. Mech. 5, 95 (1986).

[6] A. Zebib, J. Comput. Phys. 70
,
521 (1987).

[7] D. R. Gardner, S. A. Trogdon and R. W. Douglass, J. Comput. Phys. 80
, 137 (1989).

[8] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensy.stem Routine

- EISPACK Guide Extension
,
(Springer-Verlag, New York, 1977).

[9] C. B. Moler and G. W. Stewart, SIAM J. Numer. Anal. 10
, 241 (1973).

[10] G. W. Stewart, in Recent Advances in Numerical Analysis
, 1978, edited by C. de Boor

and G. H. Golub, eds., (Academic Press, New York, 1978), p. 193.

[11] L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations
,
(Cam-

bridge University Press, New York, 1985), p. 212.

[12] T. J. Aird, “ThelMSL Library,” in Sources and Development of Mathematical Software ,

edited by E. Cowell, (Prentice Hall, New Jersey, 1984), p. 264.

-13-



Table I. Eigenvalues for the model problem

Chebyshev tau [2] Present results

N <7i <75 <7max <7l <75

10 -9.8696598 -189.63800 4,272. -9.8695970 -97.95740

15 -9.8696044 -89.54550 29,439. -9.8696044 -88.84327

20 -9.8696044 -88.82644 111,226. -9.8696044 -88.82644

25 -9.8696044 -88.82644 294,697. -9.8696044 -88.82644

30 -9.8696044 -88.82644 652,722. -9.8696044 -88.82644

35 -9.8696044 -88.82644 1,255,298. -9.8696044 -88.82644

Exact -9.8696044 -88.82644 -9.8696044 -88.82644

Table II. Occurrence of spurious eigenvalues in the Chebyshev tau method. 0

No. Equation Boundary Conditions Spurious

1 z/d
2

) = CTIp ip{± 1) - 0 None

2 l/d
2

) -- crip ipW{±l) = 0 None

3 - crip Ip{± 1) = ^ (1) (±1) = 0 None

4 1p^ -- tjipW ip{± 1) - 0 (1) (±1) = 0 Two
5 0(4 ) — (Tipd ip(dzl) = ip^(±l) = 0 None 6

6 d’
(6) = crip V>(±1) — V^(±l) = 0 (2) (d:l) = 0 None

7 0(6) — cripO lp(±l) - ^^(±1) = lp^(dc.l) = 0 Two
8 0(6) — cripd t/>(±l) — ip^(±l) = ip^

2\± 1) = 0 Fourc

a. Here we denote derivatives of ^ by a superscript in parentheses.

b. May be reduced to a Dirichlet problem for ip^
2\

c. Two complex conjugate pairs with Re(cr) < 0, but Im(a) ^ 0.
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Table III. First four eigenvalues for the Orr-Sommerfeld equation.

a = 1 and R — 10 4
.

N Chebvshev tau Present results

26 0.08079254 + 35.0190231 i

0.08896405 + 29.3934954 i

0.23713751 + 0.00563644 i

0.76774613 - 0.00334424 i

0.23627968 + 0.00445813 i

0.89244759 - 0.02021587 i

0.96105877 - 0.02035856 i

0.90085138 - 0.02192943 i

38 0.05429957 + 178.047201 i

0.05782029 + 158.755478 i

0.23752676 + 0.00373427 i

0.96383565 - 0.03503110 i

0.23752985 + 0.00373031 i

0.96336687 - 0.03521228 i

0.96270591 - 0.03619040 i

0.90798372 - 0.04519238 i

50 0.04092607 + 563.551154 i

0.04288092 + 517.476254 i

0.23752648 + 0.00373967 i

0.96462865 - 0.03516827 i

0.23752648 + 0.00373967 i

0.96462731 - 0.03516958 i

0.96464022 - 0.03518657 i

0.27720546 - 0.05089517 i

From [l] 0.23752649 + 0.00373967 i

0.96463092 - 0.03516728 i

0.96464251 - 0.03518658 i

0.27720434 - 0.05089873 i

0.23752649 + 0.00373967 i

0.96463092 - 0.03516728 i

0.96464251 - 0.03518658 i

0.27720434- 0.05089873 i
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